skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Bhuvanesh Gupta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bhuvanesh Gupta; Anup K.Ghosh; Atsushi Suzuki; Sunita Rattan (Ed.)
    Antibiotic resistance in bacteria is a major health concern. Antimicrobial Peptides (AMPs) are efficient in killing most microbes and yet the development of resistance to AMPs is rare. Although AMPs show promising antimicrobial activities, commercializing them as antibiotics is difficult as in vitro extraction and purification of AMPs is complicated and expensive. AMP mimicking antimicrobial polymers can overcome such problems while maintaining the necessary features of AMPs. Here, we have developed meth-acrylamide based polymers to mimic AMPs which possess high antimicrobial activities with low cytotoxicity. Bactericidal and scanning electron microscopy studies show that the synthesized polymers are effective against Gram-positive and Gram-negative bacteria. We find that these polymers are lethal to bacteria and at the same time, they are also non-cytotoxic to mammalian cells, thereby increasing the potential of these polymers to be used as antibiotics. 
    more » « less